2017年10月28日土曜日

「曲がった空間の幾何学」で掴みは万全

このエントリーをはてなブックマークに追加
Clip to Evernote
Pocket

数学の中で、大学までとそれ以降で風景が大きく変わるものが幾何学だ。中高までの独立感のある図形の話ではなくなり、解析学や線形代数などの発展としての話になる一方、群が導入され、様々な不変量が出てきて抽象化も進み、ぐっと話が難しくなる。また、中高で幾何学に全く触れないことは無いと思うが、数物系でないと卒業までリーマン幾何学、位相幾何学に縁が無いことも多い。

ただし数物系でなくても、学部の教育を超えてくると見かけなくも無い。最近は統計学や経済学で駆使しているものある。本格的に定理の証明を一つ一つ追いかけて学ぶかは別にして、掴みぐらいは知っておいても良い。「曲がった空間の幾何学」は大学入学前の高校生を念頭に書かれた、こういう目的のための紹介本だ。

1. 凄い勢いで説明される大学の幾何学

著書の宮岡礼子氏の講義経験が生きているのか、説明に必要な行列式や固有値や一次型式や外微分や剰余類が僅かな分量だが、話の筋に過不足なく導入されていく*1のは、爽快に感じる。ストークスの定理はちょっと長めだが、ちょっとだ。さすがに低次元の話に限定されているが、オイラー数、種数、曲率、捩率、測地線、等温座標などの重要用語や、ガウスの驚愕定理やガウス・ボンネの定理などの重要定理の概要を覚えていけるし、ガウス曲率や双曲計量と言うか双曲面など、物理の人はよくお世話になっているのであろうが、文系にはそんなに縁が無いものも知る事ができる。位相幾何学を説明したあと、微分幾何学を説明していって、ガウス・ボンネの定理で両者をつないで来るのは「おお?」と思える。微分幾何学量を積分すると、位相不変量が得られるのは興味深い。導入される概念の数は多いが、当たり前だが説明されたものは後の章で使われるので、全体として連続性は保たれている。ふーんと眺めておけば、後日、何かで話が出てきたときに親近感を感じることであろう。

2. 教科書的な話を超えた紹介もある

最初から最後まで教科書的と言うわけではなく、教科書を超えたところの発展的な話も雰囲気は紹介している。第12章の石鹸膜とシャボン玉では、あり得るシャボン玉の形の条件を数学的に平均曲率がゼロであると整理すると、トーラス型やもっと複雑なシャボン玉があり得ることが示されると言う話から、幾何学の研究が勾配流や平均曲率流のようなツールを考え出して行なわれていることを紹介している。最後の第14章と第15章では、被覆空間の分類の話からポアンカレ予想の証明に必要なサーストンの幾何学予想の説明につないでくる。残念ながら学識不足でよく分からないが、幾何学、何だかすごい。

3. 勘の悪い子は嫌いな模様

類書と比較するとホモロジーの話が出てこなかったりするのでトポロジー要素は少なめだが、中高の数学の範囲の知識からすると、教科書5冊分ではすまないぐらいの範囲になっているのでは無いであろうか。リー群なども出てくるわけだし。厳密な証明は与えられていないからとは言え、理系であってもリーマン球面やケーリー変換すらまだ知らない、大学入学前の勘が良くない高校生が、この本の内容を感覚的にしろ把握するのは大変かも知れない。ベクトル解析/多様体やトポロジーの本を眺めている人でも、知らない話は何か出てくると思う。説明は簡潔で理解しやすいと思うのだが、如何せん、情報量が多い。

4. まとめではなく、個人の感想

カール・フリードリヒ・ガウスさん偉い。ところで後書きを読むと、第11章ぐらいまでと第13章の話のことだと思うが、数学科の2年次ぐらいの知識に相当するトピックがカバーされているとある。つまり、数学科の2年生は本書で出てくる定理の証明ができないとヤバイと言う事だ。数学徒でなくて良かった(´・ω・`)

*1偏微分の説明が脚注にも無いのが気になった。P.177でc''(s) = k_g + k_nに整理していく式の展開で、k_n=cos(θ) w^3_1 e_3 + sin(θ) w^3_2 e_3が忘れ去られているかも知れないと言うか、曲面に接する成分k_gだけの話なので左辺の記号がちょっとおかしい。

0 コメント:

コメントを投稿